教案有助于教师提前准备好课堂展示和实践活动,提高学生的学习参与度,教案的制定可以帮助教师更好地调整教学节奏和时间分配,下面是美篇巴巴小编为您分享的比六年级数学教案8篇,感谢您的参阅。
比六年级数学教案篇1
教学内容:教材第48~49页的24时计时法,例1、例2和练一练,练习十第1~5题。
教学要求:
1、使学生认识24时计时法,会用24时计时法表示时刻。
2、使学生初步认识时间和时刻的区别,学会计算简单的求经过时间的问题,并培养学生初步的推理能力。
教学具:教具钟面、学生准备学具钟面
教学过程:
一、复习引新
1、提问口答。我们学过哪些时间单位?1个世纪是多少年?一年是多少个月?1个月的天数有哪几种情况?
2、引入新课。一天又叫做一日。一日是多少小时呢?这就是我们今天要学习的内容:24时计时法。
二、教学新课1、教学24时计时法。
(1)说明:1天就是1日,1日的时间就是一昼夜。在一日的时间里,钟表上的时针正好走两圈。想一想,一日共多少小时?
(2)演示:第一圈从夜里12时也就是0时起,夜里1时、2时、3时上午8时、9时、到中午12时,是12时。
提问:这是从夜里12时起走了几圈?现在是什么时候的12时?经过了多少小时?
板书下面的直线图:第二圈再从中午12时走,下午1时、2时、3时、晚上8时、9时、再到夜里12时,也就是第二天的0时,也是12小时。提问:第二圈是从中午12时到什么时候的12时?也就是经过了多少小时?板书直线图:
提问:谁来说一说在一日里,钟表上的时针走了怎样的两圈,共多少小时?
追问:一日等于多少小时?板书:1日=24小时
指出:从夜里12时起,走一圈正好是中午12时,是12小时;再走一圈到午夜12时又走了12小时,共24小时,所以1日等于24小时。
(3)认识24时计时法。说明:像上面这样分上午几时和下午几时来记时的方法,通常叫做普通计时法。邮电、交通、广播电视等部门为了记时方便,不使上午和下午时间混淆,一般都采用的是从0时到24时的记时方法。就是把时针走第二圈时,时针所指的钟表上的数分别加上12:下午1时叫13时、下午2时教14时晚上12时叫几时?24时也就是第二天的.几时?
指出:像这样的0时到24时的记时方法,通常叫做24时计时法。与普通计时法比,上午的时刻相同,下午的时刻要把普通计时法的时刻数加上12。中央电视台每天19时播放新闻联播节目,这里的19时就是下午几时?
说明:在24时计时法里只要直接说几时,比较方便,在普通计时法里,一定要说明是上午几时或者是下午几时。
(4)巩固练习练一练第1题。指名板演,其余学生做在课本上。练习十第1题。小黑板出示,学生口答。练习十第2题。小黑板出示,指名板演,其余学生写在作业本上。集体订正。强调普通计时法要说明是上午还是下午。
2、教学求经过时间。
(1) 教学例1。出示例题,读题。画直线图。
提问:题里用的是什么计时法?
这辆汽车从南京的开车时刻是什么时候?
到达上海的时刻是什么时候?要求什么?
说明:求路上用了多少小时,就是求14时30分到18时30分经过了多少时间?
追问:路上用了多少小时?你是怎样想的?这里的14时30分、18时30分指的是什么?4小时指的是什么?
(2)教学例2。出示例2,指名读题。提问:题里用的是什么计时法?在24时计时法里,这两个时刻各是几时?每天从8时到19时,营业了多少时间怎样计算?老师板书。
比六年级数学教案篇2
教学要求:
1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。
2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。
教学重点:
认识反比例关系的意义。
教学难点:
掌握成反比例量的变化规律及其特征。
教学过程:
一、铺垫孕伏:
1.正比例关系的意义是什么?怎样用字母表示这种关系?
判断两种相关联量成不成正比例的关键是什么?
2.下面哪两种量成正比例关系?为什么?
(1)时间一定,行驶的速度和路程。
(2)数量一定,单价和总价。
3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?
4.引入新课。
如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)
二、自主探究:
1.教学例1。
出示例1某运输公司要运一批300吨的货物。让学生计算并完成填表任务。
每天运的数量(吨) 10 20 30 40 50
所需的天数 30 15 10 7.5
在本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。
指名学生口答 讨论结果得出:
(1)每天运的吨数和需要的`天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。
(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。
(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是300。提问:这里的300是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)
2.教学例2
出示例2
请同学们按照刚才学习例1的方法,自己学习例2,仔细想想你发现了些什么?学生观察思考后,小组讨论:长方形的面积不变,当长发生变化时,长方形的宽发生变化吗?变化的规律是怎样的?
3.概括反比例的意义。
(1)综合例1、例2的共同点。
提问:请你比较一下例1和例2,说一说,这两个例题有什么共同的地方?
(2)概括反比例意义。
例1、例2里两种相关联的量,它们是什么关系的量呢?说明:像例1、例2里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?(板书:xy=k(一定))指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用xy=k(一定)来表示。
4.具体认识。
(1)提问:例1里有哪两种相关联的量?这两种量成反比例关系吗?为什么,
例2里的两种量成反比例关系吗?为什么?
(2)提问:看两种相关联的量成不成反比例,关键要看什么?
(3) 判断。
现在回过来看开始写的关系式:工作效率工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,那它们就是成反比例的量,相互之间的关系就是反比例关系。
比六年级数学教案篇3
教学内容:
比例的意义:
使学生理解比例的意义,能应用比例的意判断两个比能否成比例。
教学重点:
比例的意义。
教学难点:
找出相等的比组成比例。
教学过程:
一、旧知铺垫
1.什么是比?什么叫比值?怎样求比值?
2.求下面各比的比值。
12:16
3/4:1/8
4.5:2.7
二、探索新知
1.教学例1。
(1)实物投影呈现课文情境图。(不出现国旗长、宽数据)
①说一说各幅图的情景。
②图中有什么相同之处?
(2)这几面国旗的形状一样,但长和宽却各不相同。请大家算一算它们长和宽的比,看看能发现什么?
(3)(指教室里的国旗)这面国旗的长和宽的比值是多少?
学生回答教师板书:
60:40=3/2
操场上的国旗的长和宽的比值是多少?与这面国旗有什么关系?
学生回答长、宽比值。
2.4:1.6=3/2
两面国旗的长和宽的比值相等。
板书:2.4:1.6=60:40
也可以写成:2.4/1.6.=60/40
(4)找比例。
师:在这四面国旗的尺寸中,你还能找出哪些比可以组成等式?
如:5:10/3=15:10
5:10/3=2.4:1.6
15?10=2.4/1.6
15/10=60/40
(5)什么是比例?
表示两个比相等的式子叫做比例。
(6)1:2是是比例吗?你能把它组成一个比例吗?
(7)完成教材“做一做”。
第1题。
什么样的比可以组成比例?
把组成的比例写出来。
说一说你是怎么找的。
同学之间互相交流,检验各自所写的比例。
第2题。
学生独立写比例,看谁写得多。
同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。
3.课堂小结。
(1)什么叫做比例?
(2)一个比例式可以改写成几个不同的比例式?
三、巩固练习
完成课文练习六第1~3题。
第一课时教学反思
复习环节发现部分学生对求比值出现知识遗忘。特别是对于如何求两个小数或两个分数的比值,而这部分知识是本课判断能否组成比例的关键,所以在复习中必须舍得花时间,夯实基础后才能继续推进新授学习。
在总结比例概念的时机上,我对教材稍做修改。因为仅从一个例子就要求学生概括出比例的含义,对他们而言难度较大。因此,我在教学完2.4:16.=60:40后,请学生们把四面国旗长和宽的比,也根据比值相等的组成等式.在此基础上再提问“怎样的式子叫做比例?”明显感觉学生们能够根据实践经验较准确地抽象出概念。同时,建议在巩固练习中补充概念的判断题,如:6:10和9:15,(虽然两个比的比值相等,但因为没有组成式子,所以不是比例。)
做一做第2题隐含着初中相似三角形对应边成比例的性质,教参给出了4个比例,“2∶4 = 1.5∶3、4∶2 = 3∶1.5、2∶1.5 = 4∶3、1.5∶2 = 3∶4。”其实应该共可写出8个比例。交换等号两边的比,还可以组成4个不同的比例1.5:3=2:4、3:1.5=4:2、4:3=2:1.5、 3:4=1.5:2。为什么仅仅相换了等号两边的比,就应该算作不同的比例呢?(必须结合比例各部分的名称来解释)怎样才能将4个数,既不重复又不遗漏地写出8个比例来呢?(我觉得在学习完比例的基本性质后更容易理解)。因此,将此题下移至比例的基本性质一课完成。
练习六第1题必须特别关注,因为其中第2、4小题体现了正比例的特点。因此,在教学中,我不仅要求学生判断“相对应的两个量的比能否组成比例”,还补充要求他们回答相应两个量的比值表示的含义。如第2小题,有的学生用箱子数量:质量,那么比值的含义应该为每千克的箱子是多少个。也有的学生用质量:箱子数量,那么比值的含义则为每个条子的质量。通过练习,强化数量关系,为后继学习作好铺垫。
练习六第2题,如果将4个数两两排列求比值,有12种情况,再从中找出比值相等的组成比例太麻烦,有没有比较方便快捷的方法呢?有!孩子们发现:将的数与第二大的数组成比;将剩下的两个数也按大数比小数组成比,就能够较快判断出所组成的比能否组成比例。
比六年级数学教案篇4
一、教学目标:
会把具体的数代入含有字母的式子求它的值。
教学重点:把具体数代入含有字母的式子求值。
教学难点:会用规范的格式书写求值过程,能化简的化简后再求值。
教学准备:
二、制定依据:
1.内容分析学生已经初步学会了化简,代入求值要求学生把原先用简便方法表示的字母式,省略的乘号写出来。
2.学生实际格式书写要做一定的辅导,有些学生再代入求值时,把原先的数字写在后面,其实应该让学生明白这根本没有必要。
教学过程时间教学环节教师活动学生活动设计意图复习与导入探究阶段巩固阶段课堂小结:
作业:
1、求值你会用一个式子表示下面的算法流程吗?课件演示。当我们输入的数分别时3、0、50、6.5…时,输出的数是多少?从表中抽一个表示x的数,求18x+32的值先让学生独立计算,反馈后教师强调并示范书写格式:解:当x=36时,18x+32 =18×36+32 =648+32 =680学生模仿规范的书写格式计算当x取其它值时,18x+32的值。反馈时,注意书写格式。小结书写格式注意点:
(1)写“解”;
(2)写明式子中字母的值;
(3)用递等式的形式代入计算式子的值。
2、试一试:
当a=3,b=12时,求9a-2b的值。
观察,这一题与第一题有何区别?(有两个字母),思考一下,怎样书写?学生独立计算,反馈,板书:解:当a=3,b=12时,9a-2b =9×3-2×12 =27-24 =3当x=17时,求4x+6x的值。
学生独立计算,反馈。注意:在求值的时候,能化简的先化简,再代入数字进行计算。
再次小结求含有字母式子的值的书写步骤,一般情况下,第一步写“解”,第二步写出字母等于几,第三步抄写题目,第四步能化简的要化简,第五步代入数值,第六步计算结果。小结:在求值的时候,能够先把算式化简的先化简,然后代入数字进行计算。
2、求值:
当b=5时,求9b+3b-6b的值。
当m=5,n=3时,求8m-m+n2的值。
拓展在第一个10x+32流程图中,如果输出的数是98,那么输入的数是多少?这节课你有什么收获?学生讨论交流求值的格式,学生第一次接触,这里通过教师示范、学生模仿、反馈评价、小结格式等步骤,帮助学生掌握规范的书写格式小组合作解答学生小组讨论。
汇总反馈小组合作尝试解决后面两题。
汇报交流输入数从具体的数到抽象的字母,水到渠成的引出含有字母的式子。再让学生举例字母x表示的数,让学生在举例中感知字母x可以表示任何一个数,并为后面求值提供了来自学生自己的素材例题1提供的是含有一个字母的不需化简的式子,通过例题2提供求含有多个字母的和需化简的式子的值。
拓展,供思考反思重建:
板书:
化简与求值(2)当x=3时,10x+32的值例2当x=17时,求4x+6x的值解:当x=3时,10x+32=9×3-2×12=27-24=3。
比六年级数学教案篇5
教学目标
1.进一步理解采用法定计量单位的重要意义.
2.复习长度、面积、体积、质量、时间单位.
3.复习各种计量单位间的进率.
教学重点
指导学生汇总整理学过的计量单位,牢固掌握各种计量单位及单位间的进率.
教学难点
掌握各种计量单位的实际大小及进率,正确使用计量单位.
教学步骤
一、直接导入.
提问导入:同学们,改革开放以来,我国采用了国际上通用的法定计量单位,你能说说这是为什么吗?(学生自由回答)
教师归纳:我国从1990年起废除原来的计量单位,采用国际上通用的法定计量单位,目的是为了便于国际交流,扩大开放,不断发展面向世界的外向型经济.因此,我们要认真学好有关计量的知识.这节课我们整理和复习量的计量.(教师板书课题)
二、归纳整理.
(一)启发学生回忆:我们学过了哪些量的计量?
教师板书:
长度 质量 时间
面积
体积(容积)
(二)复习长度、面积、体积单位及进率.
1.启发学生回忆:已学过的长度单位有哪些?每个长度单位实际有多大?相邻单位间的进率是多少?
2.启发学生回忆:已学过的面积单位有哪些?每个面积单位实际有多大?相邻单位间
的进率是多少?
学生讨论:相邻面积单位之间的进率为什么都是100?
师生归纳:面积单位是根据长度单位确定的,长度单位间的进率是10,面积单位间的进率就是100.
3.启发学生回忆:已学过的体积(容积)单位有哪些?相邻单位间的进率是多少?
学生思考:相邻体积单位之间的进率为什么是1000?
教师说明:面积单位体积(容积)单位都是依据长度单位确定的,长度单位间的进率是10,面积单位间的进率是100,体积(容积)单位间的进率是1000,要注意它们之间的联系与区别,在实际计量时做到准确无误.
4.练习.
(1)在( )里填上适当的计量单位名称.
一枝铅笔长176( ) 一个篮球场占地420( )
一张课桌宽52( ) 一个火柴盒的体积是21( )
一间教师的面积是48( ) 一种保温瓶的容量是2( )
(2)一个正方体的体积是1立方米,它的棱长是多少?它的每个面的面积是多少?
(3)用棱长1厘米的小正方体木块堆成一个棱长1分米的正方体,需要多少块?把这些小正方体木块排成一行,有多长?
(三)复习质量单位.
1.启发学生回忆:学过的质量单位有哪些?它们之间的进率是多少?(并填写下表)
2.练习.
①10麻袋大米约1( )
②l个鸡蛋约6.5( )
③1棵白菜约2.5( )
④1名六年级学生体重是40( )
比六年级数学教案篇6
课 题 生活与百分数
教学目的
通过设计合理存款方案的活动,帮助学生进一步熟练地掌握利息的计算方法。经历信息搜集的全过程,提高搜集信息和综合运用信息解决百分数实际问题的能力。
重 点:经历搜集信息,运用信息解决问题的全过程。
难 点:设计合理的存款方案。
一、活动??
上节课我们学习了储蓄的相关知识,知道了生活中离不开百分数,今天我们就继续来研究生活与百分数。(板书:生活与百分数)
昨天我给大家留了一个作业,让你们去调查一下附近银行的最新利率,并与教材上的利率表进行对比,了解国家调整利率的原因。现在我们来交流一下。
(学生边说,教师边板书)
你们知道国家为什么要调整利率吗?(向学生介绍:国家为了社会经济的稳定和增长,需要根据不同的社会情况来随时调整利率。)
二、活动二
(1)调查理财方式。
师:除了以上关于利率的事情,你们还调查到了什么?
(2)提出探究问题。
课件出示:李阿姨准备给儿子存2万元,供他六年后上大学,请你帮李阿姨设计一下,黑板上的三种理财方式哪种的收益更高?
(3)学生用计算器独立完成后,进行小组内的交流。
请三位学生到黑板上板书三种方式的计算过程。
设计意图:在本环节的教学中,主要采取学生自主尝试解决问题的.方式,先让学生讨论清楚三种储蓄方式,然后自己独立思考,再列式计算,最后通过对比发现本金和存期相同时,利率越高利息越高。
3、千分数和万分数
(1)千分数表示一个数是另一个数的千分之几的数,叫做千分数。千分数也叫千分率。与百分数一样,千分数也有千分号,千分号写作“‰”千分号具有一切百分数的特点。例如:某市20xx年人口总数是3500000人,这一年出生婴儿28000人,该市的人口出生率是8‰。20xx年我国全年出生人口1604万人,出生率为11.93‰,死亡人口960万人,死亡率为7.14‰;自然增长率为4.76‰。
(2)万分数表示一个数是另一个数的万分之几的数,叫做万分数。万分数也叫万分率。与百分数和千分数一样,万分数也有万分号“?”。万分数也具有一切百分数和千分数的特点。例如:一本书有10万字,差错率不能超过1?,即该书的差错数不能超过10个。
三、全课总结
师通过今天的学习,你有什么新的收获?还有什么问题?
比六年级数学教案篇7
教学目标
1.使学生理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算.
2.掌握分数除以整数的计算法则,并能正确的进行计算.
3.培养学生分析能力、知识的迁移能力和语言表达能力.
教学重点
正确归纳出分数除以整数的计算法则,并能正确的进行计算.
教学难点
正确归纳出分数除以整数的计算法则,并能正确的进行计算.
教学过程
一、复习引新
(一)说出下面各数的倒数.
0.3 6
(二)已知126×45=5670,直接说出5670÷45和5670÷126的得数,再说说你是怎样想的,根据是什么.(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算.)
(三)引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来学习分数除法.(板书课题:)
二、新授教学
(一).教学分数除法的意义(演示课件:分数除法的意义)
1.每人吃半块月饼,4个人一共吃多少块月饼?
教师提问:半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个?求4个是多少怎样列算式?
2.两块月饼,平均分给4人,每人分得多少块?怎样列式?
列式:2÷4
3.两块月饼,分给每人半块,可以分给几个人?
列式:
教师提问:说一说结果是多少?你是如何得出结果的?
4.组织学生讨论:分数除法的意义.
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算.
5.练习反馈.
根据:,写出,
(二)教学分数除以整数的计算法则
1.出示例1.把米铁丝平均分成2段,每段长多少米(演示课件:分数除以整数)
(1)求每段长多少米怎样列算式?
(2)以小组为单位讨论一下得多少呢?
米平均分成2段就是要把6个米平均分成2份,每份是3个米是米.
(3)教师板书整理.
(米)
2.教师质疑:如果把米铁丝平均分成3段、6段怎样计算?
也可以这样想:把米铁丝平均分成3段,就是求米的是多少,列式是:
把米铁丝平均分成6段,就是求米的是多少,列式是:
3.教师继续质疑:如果把米铁丝平均分成4段每段长多少米?怎样计算?
(米)
为什么采用转化成分数乘法这种方法比较好呢?
组织学生观察在转变中,什么变了,什么没变?讨论分数除以整数的计算法则.
4.学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数.
比六年级数学教案篇8
一、教学内容:
苏教版六年级上册68-77页
二、教材分析:
?认识比》是苏教版六年级上册中第五单元内容,是本册教材的教学重点之一。教材密切联系学生已学有的学习经验和生活经验过,设置了多种情境图。通过对这部分内容的教学,不仅能够发展对除法与分数的认识,进一步沟通知识间的联系,还能够加深学生对比的性质、比的应用理解。
三、学情分析:
学生已经掌握了除法和分数的意义,在此基础上教学一些关于比的基础知识,能够发展学生对除法和分数的认识,进一步沟通知识间的内在联系,完善认知结构,为以后进一步学习比例及其它方面的知识打好基础。
四、教学目标:
1.知识技能:使学生在具体的情境中理解比的意义,掌握比的读法、写法,知道比的各部分名称,要会求比值。
2.过程与方法:使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。
3.情感态度与价值观:使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。
五、教学重点:
理解比的意义;理解比与分数、除法的关系。
六、教学难点:
理解比与分数、除法的关系,在生活中发现比,感受比。
七、教具准备:
多媒体课件、学生自备三角板一副
八、教学过程:
1.创设情境,引入比
课件出示例1问:图上有什么?(2杯果汁,三杯牛奶)想一想:可以怎样表示这两个数量之间的关系?根据学生回答课件呈现:牛奶比果汁多一杯;果汁比牛奶少一杯果汁的杯数是牛奶的;牛奶的杯数是果汁的板书:2÷3=
3÷2=
小结:两个数量相比较,既可以用减法来比较两个数量之间相差多少,也可以用除法或分数来表示两者之间的倍数关系。其实,在比较两个数量之间的关系时,还可以用比来表示。这就是我们今天一起学习的新内容——认识比(板书)
2.自主探究,认识比
(1)用比表示两个同类量之间的相除关系
(2)用比表示两个不同类量之间的.相除关系
(3)揭示比的意义。观察屏幕上的几个比,想一想两个数的比可以表示什么?想好以后和你的同桌讨论一下。(小组交流、全班交流)
小结:分数就是除法,比与除法有关系,两个数的比表示两个数相除,比的前项除以比的后项得到的商就是比值。问:比的后项能为0吗?
不能
(4)课件出示
3.自主练习,应用比
学生独立完成课本p70“练一练”1、2、3
4.拓展延伸,感受比
你听说过“黄金比”吗?黄金比的比值约等于0,618。从古希腊以来,一直有人认为把黄金比应用于造塑艺术,可以使作品给人以最美的感觉。因此,黄金比在日常生活中有着广泛的应用。能找找看吗?
5.课堂小结:两个数的比表示两个数相除,比的前项除以比的后项得到的商就是比值。
会计实习心得体会最新模板相关文章: